Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

William T. A. Harrison

Department of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland

Correspondence e-mail:
w.harrison@abdn.ac.uk

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.042$
$w R$ factor $=0.131$
Data-to-parameter ratio $=24.7$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

Piperizinium hydrogen phosphite monohydrate

The title compound, $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{~N}_{2}{ }^{2+} \cdot \mathrm{HPO}_{3}{ }^{2-} \cdot \mathrm{H}_{2} \mathrm{O}$, contains doubly protonated piperizinium cations, hydrogen phosphite anions and water molecules. The component species have normal geometrical parameters and interact by way of $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, resulting in [010] chains of alternating $\left[\mathrm{HPO}_{3}\right]^{2-}$ and $\mathrm{H}_{2} \mathrm{O}$ species, crosslinked by the organic moieties. A possible $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interaction is also present.

Comment

The crystal structures of (protonated) amine hydrogen phosphites containing $\left[\mathrm{HPO}_{3}\right]^{2-}$ or $\left[\mathrm{H}_{2} \mathrm{PO}_{3}\right]^{-}$oxo-anions are of crystallochemical interest in terms of the interplay between the hydrogen bonds linking the cations, anions, and, if applicable, water molecules together (Averbuch-Pouchot, 1993a,b; Harrison, 2003a,b).

$\left[\mathrm{HPO}_{3}\right]^{2-} \mathrm{H}_{2} \mathrm{O}$
(I)

The asymmetric unit of the title compound, (I), consists of two half-molecule $\left\{\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{~N}\right\}$ fragments of $\left(\mathrm{C}_{4} \mathrm{H}_{12} \mathrm{~N}_{2}\right)^{2+}$ piperizinium cations, an $\left[\mathrm{HPO}_{3}\right]^{2-}$ hydrogen phosphite group and a water molecule. Inversion symmetry (Fig. 1) generates the two complete piperizinium cations, and the water O atom is disordered over two adjacent sites (see Experimental). The

Figure 1
View of (I) (50% displacement ellipsoids; H atoms are drawn as small spheres of arbitrary radius). The disordered $\mathrm{O} 4 b$ species is omitted. Symmetry codes: (i) $-x, 1-y,-z$; (ii) $1-x, 1-y,-z$.

Received 9 August 2004
Accepted 13 August 2004 Online 21 August 2004
\qquad

Figure 2
Detail of a [010] hydrogen phosphite-water chain with the $\mathrm{H} \cdots \mathrm{O}$ components of the hydrogen bonds indicated by dashed lines (atom $\mathrm{O} 4 b$ not shown). Symmetry codes: (i) $x, y+1, z$; (ii) $x, y-1, z$.

Figure 3
Unit-cell packing in (I) projected onto (010). The H \cdots O components of the hydrogen bonds are indicated by dashed lines. O4b and all C-H H atoms are omitted for clarity.
hydrogen phosphite group shows its usual (Harrison, 2003a) pseudo-pyramidal geometry [mean $d(\mathrm{P}-\mathrm{O})=1.521$ (2) \AA; mean $\left.\theta(\mathrm{O}-\mathrm{P}-\mathrm{O})=112.48(9)^{\circ}\right]$ and the organic species adopt typical chair conformations.

As well as electrostatic forces, the component species in (I) interact by means of $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 2), and possibly a $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interaction (see below). Infinite chains of alternating $\left[\mathrm{HPO}_{3}\right]^{2-}$ and $\mathrm{H}_{2} \mathrm{O}$ moieties are formed (Fig. 2) along [010] as a result of the water-to-phosphite $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, with the repeating units generated by translation symmetry. The resulting P1..P1 $1^{\text {ii }}$ (Fig. 2; see Table 2 for symmetry code) separation of 6.5706 (7) \AA is naturally much larger than the typical P...P separations (4.7-4.9 Å) seen when $\left[\mathrm{H}_{2} \mathrm{PO}_{3}\right]^{-}$ dihydrogen phosphite units link together by way of $\mathrm{P}-\mathrm{O}-$ $\mathrm{H} \cdots \mathrm{O}-\mathrm{P}$ interactions without an intervening water molecule (Averbuch-Pouchot, 1993a, Harrison, 2003a).

The piperizinium cations crosslink the $[010]\left[\mathrm{HPO}_{3}\right]^{2-}-\mathrm{H}_{2} \mathrm{O}$ chains by way of the $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 2), with all four bonds close to linear [mean $\theta(\mathrm{N}-\mathrm{H} \cdots \mathrm{O})=168^{\circ}$]. A short $\mathrm{C} 1-\mathrm{H} 5 \cdots \mathrm{O} 4 a^{\text {iv }}$ (Table 2) interaction was identified in a PLATON (Spek, 2003) analysis of (I). If it is not merely a packing artefact, it may provide some additional coherence
between the piperizinium cations and the water component of the $\left[\mathrm{HPO}_{3}\right]^{2-}-\mathrm{H}_{2} \mathrm{O}[010]$ chains, although its role, if any, in the disordering of the water molecule O 4 atom is not obvious.

Experimental

$\mathrm{H}_{3} \mathrm{PO}_{3}(0.82 \mathrm{~g} ; 1 \mathrm{mmol})$ and piperizine hexahydrate $(1.92 \mathrm{~g}$; 0.01 mmol) were dissolved in 10 ml deionized water, resulting in a clear solution. Block-shaped crystals of (I) grew as the water evaporated over several days.

Crystal data

$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{~N}_{2}{ }^{2+} \cdot \mathrm{HPO}_{3}{ }^{2-} \cdot \mathrm{H}_{2} \mathrm{O}$
$M_{r}=186.15$
Monoclinic, $P 2_{1} / c$
$a=12.2476$ (8) A
$b=6.5706$ (4) \AA
$c=10.6592$ (8) \AA
$\beta=92.744$ (1) ${ }^{\circ}$
$V=856.8(1) \AA^{3}$
$Z=4$

Data collection

Bruker SMART1000 CCD
diffractometer
ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
$T_{\text {min }}=0.925, T_{\text {max }}=0.949$
6211 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.042$
$w R\left(F^{2}\right)=0.131$
$S=1.02$
2468 reflections
100 parameters
$D_{x}=1.443 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 2470
\quad reflections
$\theta=3.3-29.8^{\circ}$
$\mu=0.30 \mathrm{~mm}^{-1}$
$T=293(2) \mathrm{K}$
Block, colourless
$0.27 \times 0.23 \times 0.19 \mathrm{~mm}$

2468 independent reflections
1930 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.022$
$\theta_{\text {max }}=30.0^{\circ}$
$h=-17 \rightarrow 16$
$k=-8 \rightarrow 9$
$l=-14 \rightarrow 12$

H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0845 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\max }=0.78 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\min }=-0.44 \mathrm{e} \mathrm{A}^{-3}$

Table 1
Selected bond lengths (\AA) for (I).

P1-O3	$1.5151(13)$	P1-O1	$1.5234(14)$
$\mathrm{P} 1-\mathrm{O} 2$	$1.5230(12)$		

Table 2
Hydrogen-bonding geometry $\left(\AA,{ }^{\circ}\right)$ for (I).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{N} 1-\mathrm{H} 2 \cdots \mathrm{O} 2^{\text {i }}$	0.90	1.84	2.7147 (19)	164
$\mathrm{N} 1-\mathrm{H} 3 \cdots \mathrm{O} 2^{\text {ii }}$	0.90	1.81	2.7043 (19)	172
$\mathrm{N} 2-\mathrm{H} 8 \cdots \mathrm{O} 3^{\text {ii }}$	0.90	1.77	2.642 (2)	163
$\mathrm{N} 2-\mathrm{H} 9 \cdots \mathrm{O} 1^{\text {iii }}$	0.90	1.78	2.676 (2)	171
$\mathrm{O} 4 a-\mathrm{H} 14 \cdots \mathrm{O} 1$	0.95	1.90	2.840 (4)	167
$\mathrm{O} 4 a-\mathrm{H} 15 \cdots \mathrm{O} 3^{\text {ii }}$	0.93	1.90	2.811 (4)	168
O4b-H14 \cdots O1	0.93	1.90	2.752 (4)	151
$\mathrm{O} 4 b-\mathrm{H} 15 \cdots \mathrm{O} 3^{\text {ii }}$	0.96	1.90	2.765 (4)	149
$\mathrm{C} 1-\mathrm{H} 5 \cdots \mathrm{O} 4 a^{\text {iv }}$	0.97	2.38	3.300 (5)	159
Symmetry codes: $-x, \frac{1}{2}+y, \frac{1}{2}-z .$	$x, \frac{1}{2}$	(ii)	$y, z ;$ (iii)	$z-\frac{1}{2}$; (iv)

The water O atom was modelled as being disordered over two adjacent sites with isotropic displacement factors $[d(\mathrm{O} 4 a \cdots \mathrm{O} 4 b)=$ 0.638 (5) \AA; fractional site occupancies $=0.563$ (14) and 0.437 (14) for O4a and O4b, respectively, with their sum constrained to unity]. The present data did not reveal H -atom sites that could be unambiguously associated with either O4a or $\mathrm{O} 4 b$; instead, two distinct features in
the difference map provided H -atom sites that were reasonable for both $\mathrm{O} 4 a$ and $\mathrm{O} 4 b$ (see Table 2). These $\mathrm{O}-\mathrm{H}$ H atoms were refined by riding on $\mathrm{O} 4 a$ in their as-found positions. The $\mathrm{N}-\mathrm{H} \mathrm{H}$ atoms were found in difference maps and refined by riding in their idealized positions $[d(\mathrm{~N}-\mathrm{H})=0.90 \AA$]. The H atoms bonded to C and P were placed in calculated positions $[d(\mathrm{C}-\mathrm{H})=0.97 \AA ; d(\mathrm{P}-\mathrm{H})=1.32 \AA]$ and refined by riding. For all H atoms, the constraint $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\text {eq }}$ (carrier atom) was applied.

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97; molecular graphics: ORTEP-3 (Farrugia,
1997); software used to prepare material for publication: SHELXL97.

References

Averbuch-Pouchot, M. T. (1993a) Acta Cryst. C49, 813-815.
Averbuch-Pouchot, M. T. (1993b) Acta Cryst. C49, 815-818.
Bruker (1999). SMART (Version 5.624), SAINT-Plus (Version 6.02A) and $S A D A B S$. Bruker AXS Inc., Madison, Wisconsin, USA.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565-565.
Harrison, W. T. A. (2003a) Acta Cryst. E59, o769-o770.
Harrison, W. T. A. (2003b) Acta Cryst. E59, o1267-o1269.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

